

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/test-kubespawner/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/test-kubespawner/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

jupyterhub-kubernetes-spawner

Kubernetes spawner for JupyterHub

Setting up a dev environment

Setting up kubernetes for development

Setting up a dev environment to work with the Kubernetes Spawner can be a bit tricky,
since normally you’d run JupyterHub in a container in the kubernetes cluster itself.
But the dev cycle for that is longer than comfortable, since you’ve to rebuild
the container and redeploy.

There is an easier way, with minikube and some networking tricks. Only tested on Linux
at this time, but should work for OS X too.

	Install minikube [http://kubernetes.io/docs/getting-started-guides/minikube/]. Use the
VirtualBox [https://virtualbox.org] provider. This will set up a kubernetes cluster inside
a VM on your machine. It’ll also setup kubectl on your host machine to interact with
the kubernetes cluster, and a ~/.kube/config file with credentials for connecting to this
cluster.

	Run minikube start. This will start your kubernetes cluster if it isn’t already up. Run
kubectl get node to make sure it is.

	Run minikube stop. This will stop the VM, allowing us to perform some amount of surgery
on it to setup networking as we want.

	Run VBoxManage hostonlyif create. This will create a network interface to communicate
between your VM and your host. Note the output of this command - it will mention the name of
your hostonly interface. For example, your output might be:

Interface 'vboxnet4' was successfully created

In this case, our interface name is vboxnet4.

	Run the following command on your host

VBoxManage modifyvm minikube --nic3 hostonly --cableconnected3 on --hostonlyadapter3 vboxnet5

Instead of vboxnet4 use whatever the output from step 4 was.

	Start up minikube again with minikube start.

	Now the containers running on kubernetes can connect to your host, via the IP address for vboxnet4
interface. You can find this IP with:

ip addr show vboxnet4 | grep 'scope global' | awk '{ print $2; }' | sed 's/\/.*$//'

Substituting vboxnet4 with whatever was the output of step 4.

	Now, we need to be able to access pod ips from your host. We can do this by adding a static route
directly on your host. First we delete any existing routes for 172.17.0.0/16 (which is the pod network),
with:

sudo ip route delete 172.17.0.0/16

Note that if you had docker installed on your host, this will futz with it! You might have to stop
the docker daemon before doing it. Restarting the docker daemon should bring it back to working order,
however.

Then, we can add a static route that routes all pod traffic to the virtual machine, with:

sudo ip route add 172.17.0.0/16 via $(minikube ip)

TADA! Now you have a kubernetes cluster that has two way communication with your host! This lets you
run JupyterHub on your host (for faster development) while spawning pods inside Kubernetes in the
VM.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

